Distributed optimization and market analysis of networked systems
نویسنده
چکیده
In the interconnected world of today, large-scale multi-agent networked systems are ubiquitous. This thesis studies two classes of multi-agent systems, where each agent has local information and a local objective function. In the first class of systems, the agents are collaborative and the overall objective is to optimize the sum of local objective functions. This setup represents a general family of separable problems in large-scale multi-agent convex optimization systems, which includes the LASSO (Least-Absolute Shrinkage and Selection Operator) and many other important machine learning problems. We propose fast fully distributed both synchronous and asynchronous ADMM (Alternating Direction Method of Multipliers) based methods. Both of the proposed algorithms achieve the best known rate of convergence for this class of problems, O(1/k), where k is the number of iterations. This rate is the first rate of convergence guarantee for asynchronous distributed methods solving separable convex problems. For the synchronous algorithm, we also relate the rate of convergence to the underlying network topology. The second part of the thesis focuses on the class of systems where the agents are only interested in their local objectives. In particular, we study the market interaction in the electricity market. Instead of the traditional supply-follow-demand approach, we propose and analyze a systematic multi-period market framework, where both (price-taking) consumers and generators locally respond to price. We show that this new market interaction at competitive equilibrium is efficient and the improvement in social welfare over the traditional market can be unbounded. The resulting system, however, may feature undesirable price and generation fluctuations, which imposes significant challenges in maintaining reliability of the electricity grid. We first establish that the two fluctuations are positively correlated. Then in order to reduce both fluctuations, we introduce an explicit penalty on the price fluctuation. The penalized problem is shown to be equivalent to the existing system with storage and can be implemented in a distributed way, where each agent locally responds to price. We analyze the connection between the size of storage, consumer utility function properties and generation fluctuation in two scenarios: when demand is inelastic, we can 3 explicitly characterize the optimal storage access policy and the generation fluctuation; when demand is elastic, the relationship between concavity and generation fluctuation is studied. Thesis Supervisor: Asu Ozdaglar Title: Professor
منابع مشابه
Reconfiguration and optimal placement of distributed generations in distribution networks in the presence of remote voltage controlled bus using exchange market algorithm
Abstract: Since distribution networks have a large share of the losses in power systems, reducing losses in these networks is one of the key issues in reducing the costs of global networks, including issues Which has always been considered. In this thesis, the reconfiguration of the distribution network in the presence of distributed generation sources (DGs) with respect to two types of bus, P ...
متن کاملStabilization of Networked Control Systems with Variable Delays and Saturating Inputs
In this paper, improved conditions for the synthesis of static state-feedback controller are derived to stabilize networked control systems (NCSs) subject to actuator saturation. Both of the data packet latency and dropout which deteriorate the performance of the closed-loop system are considered in the NCS model via variable delays. Two different techniques are employed to incorporate actuator...
متن کاملNeural-Smith Predictor Method for Improvement of Networked Control Systems
Networked control systems (NCSs) are distributed control systems in which the nodes, including controllers, sensors, actuators, and plants are connected by a digital communication network such as the Internet. One of the most critical challenges in networked control systems is the stochastic time delay of arriving data packets in the communication network among the nodes. Using the Smith predic...
متن کاملModelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کامل